
Edge Replacement Grammars: A Formal Language Approach for Generating Graphs
Revanth Reddy1∗, Sarath Chandar2∗, Balaraman Ravindran1,3

1Department of Computer Science and Engineering, Indian Institute of Technology Madras
2Mila, Université de Montréal

3Robert Bosch Centre for Data Science and AI, Indian Institute of Technology Madras

Motivation

I A generative model that closely mimics the structural properties of a
given set of graphs has utility in a variety of domains.

I The model can be used to anonymize graph data, by generating
graphs similar to the original graphs.

I If we are able to fit the model more accurately, we can just save the
model instead of the entire graph data.

I We can do graph classification by determining the notion of likelihood
of the test graph as per the given model.

I Our graph model is based on a variant of Probabilistic Edge
Replacement Grammar (PERG) called Restricted PERG (RPERG).

Definitions

Definition 1: An Edge Replacement Grammar (ERG) is a tuple G =
〈N, T ,P,S〉 where

I N and T are finite disjoint set of non-terminal and terminal edge labels.
I S ∈ N is the start edge label.
I P is a finite set of productions of the form A→ R, where A ∈ N and R

is a graph fragment with edge labels drawn from N ∪ T.
Definition 2: A Probabilistic Edge Replacement Grammar (PERG) consists
of

I An edge replacement grammar G = 〈N, T ,P,S〉
I A parameter p(A→R) for each rule A → R ∈ P. This parameter

is the conditional probability of choosing this rule given that the non-
terminal being expanded is A with the following constraint, for any X ∈
N ,

∑
A→R:A=X p(A→ R) = 1

(a) Sample ERG (b) Sample derivation

Definition 3: Let u, v be a pair of vertices in the graph G. Let g1, g2, ..., gt be
the connected components obtained by removing u,v from G. A squeezing
operation with respect to u, v is an operation where one of the components
gi is replaced by an edge between u, v.
When t = 1, the entire graph is squeezed into a single edge. If t ≥ 3 and
g1, ..gt are isolated vertices, then squeeze operation replaces entire graph
with the edge u, v. If a graph can be squeezed into a single edge, it is a
trivial squeeze.
Definition 4: A non-squeezable graph is a graph in which the only squeeze
operation that is possible is the trivial squeeze. Star graphs and triangle are
considered as the degenerate cases.

Figure: Examples for Squeezing

Figure: a,b,c are non-squeezable while d,e,f are squeezable

Definition 5: A Restricted Probabilistic Edge Replacement Grammar
(RPERG) is a PERG such that for every rule A → R ∈ RPERG, R is a
non-squeezable graph fragment.

Learning the Grammar

If cD(A→ R) is the count of the occurrences of the sub-graph
R in the data D, then the maximum likelihood estimation of the
parameters of the model is given by

pA→R
ML =

cD(A→ R)∑
R′:A→R′ cD(A→ R′)

The learning problem now has been reduced to getting the
counts of non-squeezable components in a graph.

Algorithm 1 Learn RPERG
Input: Set of Graphs D = {g1, g2, ..., gn}.
Output: RPERG
1: function MAIN(Set of Graphs D)
2: Stack← empty stack
3: for each graph gi do
4: GET COMPONENTS(gi)
5: while Stack is not empty do
6: g← Stack.pop()
7: find a split pair (a,b) in g
8: if ∃ no split pair then
9: C(A→ g)+ = 1

10: else
11: g1, g2 ←Obtained by splitting g at (a,b)
12: if edge(a,b) /∈ g then
13: Add edge(a,b) to g2

14: end if
15: for g’ in g1, g2 do
16: GET COMPONENTS(g’)
17: end for
18: end if
19: end while
20: end for
21: end function

1: function GET COMPONENTS(Graph g)
2: CV← cut vertices in g
3: for each vk in CV do
4: n← no. of bi-connected components connected by vk

5: C(A→ star (n)) += 1
6: end for
7: S← set of all bi-connected components in g
8: for each si in S do
9: Stack.push(si)

10: end for
11: end function

Generative Model

We assume that the network is homogeneous and the links
are un-weighted. Since we have only one type of link, number
of nonterminal labels is one. The learning algorithm will con-
sider all edges in the given graph to be non-terminal edges.

Algorithm 2 Generative Model
Input: RPERG
Output: A Graph
1: Graph G = NULL
2: Add a non-terminal edge to G
3: while desired graph size is not reached do
4: Randomly pick a non-terminal edge A in G.
5: Sample a rule A→ R from RPERG and replace A with R in G.
6: end while
7: Convert all non-terminal edges in G to terminal edges.

Results

We tested the proposed model by fitting it onto several real life graph datasets. The networks vary not only
in the number of vertices and edges, but also in the clustering coefficient, diameter, degree distribution
and many other graph properties. We compare the properties of the approximate graphs generated from
RPERG, HRG, Chung-Lu and Kronecker graph models.

(a) Dataset Statistics (b) Color Coding

Figure: Arxiv GR-QC Figure: Internet Routers
To more concretely compare the eigenvectors, the cosine distance between the eigenvector centrality of
the original graph and the models’ generated graphs is calculated.
Graphlet Correlation Distance (GCD) computes the distance between two graphlet correlation matrices by
measuring the frequency of the various graphlets present in each graph, i.e the number of edges, wedges,
triangles, squares, 4-cliques, etc., and comparing the graphlet frequencies between two graphs.

(a) Cosine Distance (b) GCD Values

Conclusion

I Even though the grammar is context free, it is able to capture most of the statistical properties of the
graph.

I We observe that our algorithm is easily parallelizable as we can run the algorithm simultaneously on
multiple graphs.

I In future work, we can try to model preferential attachment by converting the grammar into a context
sensitive grammar.

I Tackling graphs with multiple types of links (heterogeneous links) is also a challenging problem.


