
Edge Replacement Grammars : A Formal
Language Approach for Generating Graphs

Revanth Reddy1∗, Sarath Chandar2∗, Balaraman Ravindran1,3

1Department of Computer Science and Engineering, IIT Madras
2Mila, Université de Montréal

3Robert Bosch Centre for Data Science and AI, IIT Madras



Motivation

Why do we need graph generative models?
Graph generative models can have utility in a wide range
of domains.
Model can be used to anonymise graph data.
If we able to fit more accurately, we can just save the
model instead of the entire graph.
Graph classification can be done by determining the notion
of likelihood of a test graph as per the given model.



Motivation

Graph grammars are an extension of the concept of
grammars on strings.
However, it becomes difficult to model graphs using graph
grammars since the RHS of the rules can be any subgraph.
We want restrict the RHS to certain types of graphs only so
that the productions can be learnt.

Our graph model is based on a variant of Probabilistic Edge
Replacement Grammar (PERG) called Restricted PERG
(RPERG).



Definitions

Definition 1: An Edge Replacement Grammar (ERG) is a tuple
G = 〈N, T ,P,S〉 where

N and T are finite disjoint set of non-terminal and terminal
edge labels.
S ∈ N is the start edge label.
P is a finite set of productions of the form A→ R, where
A ∈ N and R is a graph fragment with edge labels drawn
from N ∪ T.

(a) Sample ERG (b) Sample derivation



Definitions

Definition 2: A Probabilistic Edge Replacement Grammar
(PERG) consists of

An edge replacement grammar G = 〈N, T ,P,S〉
A parameter p(A→R) for each rule A→ R ∈ P. This
parameter is the conditional probability of choosing this
rule given that the non-terminal being expanded is A with
the following constraint, for any X ∈ N ,∑

A→R:A=X p(A→ R) = 1



Squeezing Operation

Definition 3: Let u, v be a pair of vertices in the graph G. Let
g1, g2, ..., gt be the connected components obtained by
removing u,v from G. A squeezing operation with respect to u, v
is an operation where one of the components gi is replaced by
an edge between u, v.

When t = 1, the entire graph is squeezed into a single edge. If
t ≥ 3 and g1, ..gt are isolated vertices, then squeeze operation
replaces entire graph with the edge u, v. If a graph can be
squeezed into a single edge, it is a trivial squeeze.

Figure: Examples for Squeezing



Non-Squeezable graphs

Definition 4: A non-squeezable graph is a graph in which the
only squeeze operation that is possible is the trivial squeeze.

(a) (b) (c)

(d) (e) (f)

Figure: a,b,c are non-squeezable while d,e,f are squeezable



Learning the grammar

Definition 5: A Restricted Probabilistic Edge Replacement
Grammar (RPERG) is a PERG such that for every rule
A→ R ∈ RPERG, R is a non-squeezable graph fragment.

We assume that the network is homogeneous and the links are
un-weighted. Hence, number of nonterminal labels is one.

The probability of a graph G under an RPERG is given as,

p(G) =
∏

A→R∈P

p(A→ R)c(A→R)

For a model built on a set of graphs D, the maximum likelihood
estimation of the parameters of the model is given by,

pA→R
ML =

cD(A→ R)∑
R′:A→R′ cD(A→ R′)



Algorithm

Algorithm 1 Learn RPERG

function MAIN(Set of Graphs D)
for each graph gi do

GET COMPONENTS(gi )
while Stack is not empty do

g← Stack.pop()
if ∃ no split pair (a,b) in g then

C(A→ g)+ = 1
else

g1, g2 ←Obtained by splitting g at (a,b)
for g’ in g1, g2 do

GET COMPONENTS(g’)
end for

end if
end while

end for
end function

function GET COMPONENTS(Graph g)
for each vk in cut vertices in g do

n← no. of bi-connected components connected by vk
C(A→ star (n)) += 1

end for
S← set of all bi-connected components in g
for each si in S do

Stack.push(si )
end for

end function



Graph Generation

In the learnt grammar, all the edges in the RHS of the rules will
be non-terminal edges.

Algorithm 2 Generative Model

1: Graph G = NULL
2: Add a non-terminal edge to G
3: while desired graph size is not reached do
4: Randomly pick a non-terminal edge A in G.
5: Sample a rule A → R from RPERG and replace A with R in G.
6: end while
7: Convert all non-terminal edges in G to terminal edges.



Experiments

We tested the proposed model by fitting it onto several real life
graph datasets. The networks vary not only in the number of
vertices and edges, but also in the clustering coefficient,
diameter, degree distribution and many other graph properties.

We compare the properties of the approximate graphs
generated from RPERG, HRG, Chung-Lu and Kronecker graph
models.

Dataset Nodes Edges Diameter Clust. Coeff.
Arxiv 5242 14496 17 0.529

Routers 6474 13895 9 0.252
Enron 36692 183831 11 0.497
DBLP 317080 1049866 21 0.632

Table: Dataset Statistics for real world graphs.



Experiments

Figure: Plots for Arxiv GR-QC



Experiments

Dataset RPERG HRG Chung-Lu Kronecker
Arxiv 0.0025 0.0161 0.3496 0.3406

Routers 0.0247 0.0411 0.0379 0.0614
Enron 0.00007 0.0002 0.0052 0.0676
DBLP 0.0079 0.0649 0.5854 0.4997

Table: Cosine Distance between the eigenvector centrality of original
graph and generated graphs.

Dataset RPERG HRG Chung-Lu Kronecker
Arxiv 1.086 1.094 1.792 2.071

Routers 1.293 1.404 1.975 2.776
Enron 0.487 0.525 1.319 2.83
DBLP 0.409 1.602 1.738 2.821

Table: Graphlet Correlation Distance values.



Conclusion

Even though the grammar is context free, it is able to
capture most of the statistical properties of the graph.
We observe that our algorithm is easily parallelizable as we
can run the algorithm simultaneously on multiple graphs.
In future work, we can try to model preferential attachment
by converting the grammar into a context sensitive
grammar.
Tackling graphs with multiple types of links (heterogeneous
links) is also a challenging problem.


