Motivation

- End-to-end task-oriented dialog systems use neural memory architectures to incorporate external knowledge.
- Current models break down the external KB results into the form of *Subject-Relation-Object* triples.
- This makes it hard for the memory reader to infer relationships across otherwise connected attributes.
- Existing models like Mem2Seq use a shared memory for copying entities from dialog context, as well as the KB results, thereby making inference harder.

Role	Turn	Utteranc	Utterance								
User	1	Hi, l'm lea	aving Dallas for Mar	heim from	Aug 26 – A	Aug 31					
Agent	1	I have so	I have some options starting at \$2800								
User	2	How abo	How about to Santos?								
Agent	2	I have a 3	I have a 3.0 star hotel for \$2000								
User	3	What is t	What is the name of the hotel?								
Agent	3	Regal Res	Regal Resort								
Origin	De	stination	Hotel	Price	Cat.						
Dallas	allas Mannheim		Globetrotter	\$2800	4.0						
Toronto	Cal	gary	Amusement	\$1864	4.0						
Dallas	allas Santos		Regal Resort \$2000 3								
Dallas	Ma	nnheim	Starlight	\$4018	5.0						

Figure: Sample dialog and its corresponding external KB.

Subject	Relation	Object	Subject	Relation	Object
Globetrotter	Price	\$2800	Starlight	Origin	Dallas
Globetrotter	Category	4.0	Regal Resort	Category	3.0
Globetrotter	Origin	Dallas	Regal Resort	Price	\$2000
Starlight	Category	5.0	Regal Resort	Origin	Dallas
Starlight	Price	\$4018			

Figure: Triple store in current models.

- We separate the memory used to store tokens from the input context and the results from the knowledge base.
- We propose a novel multi-level memory architecture which encodes the natural hierarchy exhibited in the KB results.
- ► We store the queries, their results and corresponding attributes in different levels.

	\leftarrow Query \longrightarrow	← Result →	← Result Key →	← Result Value →	
1		{ Driege \$2800	Price	\$2800	
		Hotel: Globetrotter,	Hotel	Globetrotter	Result 1
Query 1 Memory	{ Origin: Dallas, Dest.: Mannheim,	Category: 4.0,	Category	4.0	Cells
		}			
	Start: Aug 26, End: Aug 31,	{ Driest \$4019	Price	\$4018	Î
	Adults: 1	Hotel: Starlight,	Hotel	Starlight	Result 2 Cells
	J	Category: 5.0,	Category	5.0	
↓ .		}			
Î	{	{ Driest \$2000	Price	\$2000	
Query 2	Origin: Dallas, Dest.: Santos,	Hotel: Regal Resort,	Hotel	Regal Resort	
Memory Sta	Start: Aug 26,	Category: 3.0,	Category	3.0	
	}	}			
	Figure: Mu	Iti-Level memory ir	ו our moc	lel.	

Multi-Level Memory for Task Oriented Dialogs Revanth Reddy¹, Danish Contractor², Dinesh Raghu², Sachindra Joshi²

¹Indian Institute of Technology, Madras

Figure: Model architecture with multi-level memory

Memory Representation

Every query q_i is a set of key-value pairs $\{k_a^{q_i} : v_a^{q_i}, 1 < a < n_{q_i}\}$. q_i is represented by $q_i^v = Bag$ of words over the word embeddings of values $(v_a^{q_i})$ in q_i . Each result r_{ij} is also a set of slot-value pairs $\{k_a^{r_{ij}}: v_a^{r_{ij}}, 1 < a < n_{r_{ij}}\}$. r_{ij} is represented by r_{ii}^{v} = Bag of words over the word embeddings of values ($v_{a}^{r_{ij}}$) in r_{ij} .

Equations

Query Attention: The first level attention which is applied over the query representations. α_{μ}	$i = \frac{exp(w_2^T tan)}{\sum_i exp(w_2^T tan)}$
Result Attention : The second level attention which is applied over the result representations.	$\beta_{ij} = \frac{exp(w_3^T)}{\sum_j exp(w_3^T)}$
Result cell Attention : The third level attention which is applied over the keys in each result. $\gamma_{ijl} =$	$\frac{exp(w_4^T tanh)}{\sum_l exp(w_4^T tanh)}$
KB copy distribution : The product of attention over the three levels gives the final attention score of the values in each result.	$P_{kb}(y_t = w)$
Context copy distribution : Obtained from the at- tention scores over the input dialog context.	$P_{con}(y_t =$
Copy Distribution : The copy distribution over the memory is gated sum of the copy distributions over KB and context.	$P_c(y_t) = g_2 P_{kb}($
Output Distribution : The final output distribution is gated sum of the generate distribution and the copy distribution over memory.	$P(y_t) = g_1 P_g(t)$

²IBM Research AI, New Delhi

 $h(W_4[d_t, h_t, q_i^v]))$ $tanh(W_4[d_t, h_t, q_i^v]))$

 $[tanh(W_5[d_t, h_t, r_{ii}^v]))]$ V_3^T tanh($W_5[d_t, h_t, r_{ii}^v]$))

 $W_6[d_t, h_t, \phi^{emb}(k_l^{r_{ij}})]))$ $h(W_6[d_t, h_t, \phi^{emb}(k_I^{r_{ij}})]))$

$$= \sum_{ijl:v_l^{r_{ij}}=w} \alpha_i \beta_{ij} \gamma_{ijl}$$

$$w) = \sum_{ij:w_{ij}=w} a_{ij}$$

 $(y_t) + (1 - g_2)P_{con}(y_t)$

 $(y_t) + (1 - g_1)P_c(y_t)$

Experiments

Our experiments on three publicly available datasets show a substantial improvement of 15-25% in both entity F1 and BLEU scores as compared to existing state-of-the-art approaches.

			InCa	CamRest		Frames			
Model	BLEU	F1	Calendar F1	Weather F1	Navigate F1	BLEU	F1	BLEU	F1
Attn seq2seq	11.3	28.2	36.9	35.7	10.1	7.7	25.3	3.7	16.2
Ptr-UNK	5.4	20.4	22.1	24.6	14.6	5.1	40.3	5.6	25.8
KVRet	13.2	48.0	62.9	47.0	41.3	13.0	36.5	10.7	31.7
Mem2Seq	11.8	40.9	61.6	39.6	21.7	14.0	52.4	7.5	28.5
Multi-level Memory Model	17.1	55.1	68.3	53.3	44.5	15.9	61.4	12.4	39.7

Table: Comparison of our model with baselines

We investigate the gains made by (i) Using separate memory for context and KB triples (ii) Replacing KB triples with a multi-level memory.

	InCar					Caml	Rest	Fran	ies
Model	BLEU	F1	Calendar	Weather	Navigate	BLEU	F1	BLEU	F1
	BLLO	• •	F1	F1	F1	DLLO	• •	DLLO	• •
Unified Context and KB memory (Mem2Seq)	11.8	40.9	61.6	39.6	21.7	14.0	52.4	7.5	28.5
Separate Context and KB Memory	14.3	44.2	56.9	54.1	24.0	14.3	55.0	12.1	36.5
+Replace KB Triples with Multi-level memory	17.1	55.1	68.3	53.3	44.5	15.9	61.4	12.4	39.7
Table: Ablation study: Effect of a	sonar	ato i	mamor	, and m	nulti_lova	al ma	mor	v das	ian

Table. Abiation study. Effect of separate memory and multi-level memory design.

In a human evaluation study, users were asked to score the models in terms of accuracy of in formation in response and quality of language

We visualize the attention weights to understand how the model is inferencing over the memory. The figures below show the attention heatmap when generating the word '8.86'.

Role	Turn	Utterance	First Level Attention (α)	Second Level Attention (β) Τ	hird Level Atten
	Turn		Origin: Tijuana,	Name: Oliver Bazaar Inn,	Price 14
gent	1	hello ! how can i help you today ?	Destination: Manas, Adults : 1	Price: 1295.51,	Guest 8
	-	i just need to dream a bit, i have 4500 dollars but no vacation days.		Name: Onyx Isle Hotel,	lame Onyx I
Jser	2	i'm wondering what a hypothetical trip to Manas would be like	Origin: Tijuana,	Category: 3.5, Guest: 8.86, Price: 1434.48, Ca	tegory
gent	2	i can help with that, where are you departing from	Budget: 4500,	Name: Majestic Mountain.	Seat Eco
Jser	3	i'm in Tijuana, not departing any time soon unfortunately though	Adults: 1	Category: 2.5, Guest: 6.91,	uration
			Origin: Tijuana,	Price: 1509.5,	
gent	5	[API_CALL manas tijuana 29/8 16/9 4500]	Start: 29/8, End: 16/9, Budget: 4500, Adults: 1	Name: Sunny Wolf Inn, Category: 2.5, Guest:8.49,	Start
•	•••			The 1012.13,	
Jser	7	that's fine, what about pittsburgh	(b) Attention	over the multi-	level k
Agent	7	[API_CALL pittsburgh tijuana 4500]			
			memory.		
Agent	8	that i do have! would you be satisfied with a 3.5 star hotel ?	•		
lser	9	as of now i'm satisfied with a tent and a backpack .	Word rating	guest 3.5 1	park
5501)	what are the hotel details?	Score 0.9132 (0.0721 0.0108 0.0030	0.0005
Agent	9	the hotel is situated near a park, comes with free parking, wifi			
rgent	,	and breakfast ! does this sound good	(c) Decreasi	na order of atte	ntion
Jser	10	sounds quite nice, what about the guest rating ?			
Gold		the guest rating is impressive : 8.86	scores over	words in conte	xt.
Mem2Seq		this is the only available with the same			
		it's a 2.5 star hotel near a park, museum and airport.it has a			
N V KEL		guest rating of 8.22		Gate	value
Our Model		the onyx isle hotel has a 8.86 guest rating and offers free parking,	g_1 (Generate	from vocabulary)	0.08
		breakfast and wifi.	a (Conv fre	m KR memory)	<u>n qq</u>

Conclusion

- using a gating mechanism.
- also allows our model to support non-sequential dialogs.
- as to improve the attention signal on our multi-level memory.
- Model performance can be improved by capturing user intent better in case of non-sequential dialog flow.

		C	CamRe	st	Frames			
d		Info.	Lang.	MRR	Info.	Lang.	MRR	
-	KVRet	2.49	4.38	0.57	2.42	3.31	0.64	
).	Mem2Seq	2.48	3.72	0.51	1.78	2.55	0.50	
	Our Model	3.62	4.48	0.76	2.45	3.93	0.69	

Our model separates the context and KB memory and combines the attention on them

► The multi-level KB memory reflects the natural hierarchy present in KB results. This

► In future work, we would like to incorporate better modeling of latent dialog frames so